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Interaction of N atoms with the radiation field in the 
restricted rotating-wave approximation: I. General theory 
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Department of Physics, Ryerson Polytechnical Institute, Toronto, Ontario, Canada 

Received 16 August 1978, in final form 23 November 1978 

Abstract. A quantum model of N two-level atoms coupled by a single-mode radiation field 
under a restricted rotating-wave approximation is studied, assuming a dipole-interaction 
approximation and that the total number of excitations of the system is conserved. A 
solution is found for the case of spontaneous emission when the atoms are initially prepared 
in the state of complete inversion. This solution is valid for all times. A general solution of 
the model is also found for any initial configuration of the system, in the cases of both 
spontaneous and stimulated emission. This solution is in a closed form and valid for times 
7 < T m u .  

1. Introduction 

The model of two-level systems interacting via the electromagnetic field has been a 
subject of considerable study over the last two decades. 

Dicke (1954) proposed that atoms under special preparation could radiate in a 
collective way at a rate proportional to the square of the number of atoms. He called 
this phenomenon ‘super-radiance’. 

The problem was solved exactly (in the rotating-wave approximation) for one atom 
(Jaynes and Cummings 1963). Several attempts have been made to extend this solution 
for N atoms and although no exact solution was found in the past, many workers have 
found exact or approximate numerical solutions for both fully quantum and semi- 
classical models (Jaynes and Cummings 1963; Tavis and Cummings 1967,1968,1969; 
Eberly 1968; Eberly and Rehler 1969, 1970; Mallory 1969; Scharf 1970; Bonifacio 
and Preparata 1970; Arecchi and Courtens 1970; Walls and Barakat 1970; Senitzky 
1970; Bonifacio et a1 1971a, b; Rehler and Eberly 1971; Leonardi et a1 1972; 
Thompson 1972; Eberly 1972; Narducci et a1 1973a, b, c; Argawal 1973; Morawitz 
1973; Smithers and Lu 1974; Narducci etall974; McGillivray and Feld 1976; Glauber 
and Haake 1976; Ressayre and Tallet 1977; Lee 1977; Orszag 1977). 

In this paper, no loss of memory is assumed (the Markovian assumption), and no 
perturbation expansions are made. The usual dipole interaction and restricted rotat- 
ing-wave approximations are made. The only additional approximation made turns out 
to be insignificant for a reasonably large number of atoms. 

For the first time a closed analytic solution is found for the model. The model carries 
the following physical assumptions: 

( a )  The dipole interaction is a good representation of the physical system. 
(6) The operator (a+a + R 3 )  is conserved, which in physical terms simply means 

that the number of excitations of the atoms and radiation field is conserved. This last 
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2206 M Orszag 

assumption is a restricted version of the rotating-wave approximation (RWA), a feature 
present in almost all previous work. 

Although some particular cases are compared with existing work, the detailed 
numerical analysis and discussion associated with the behaviour of the solution will be 
presented in a future publication (Orszag 1979a). 

In 8 2 the model is briefly reviewed for the off-resonance case with one single 
radiation mode. In 0 3 a solution is found for the case M = r, valid for all times, as well 
as a general solution for any initial configuration of the system, valid up to a maximum 
time T, , ,~~ .  Both solutions correspond to the case of spontaneous emission (n (0)  = 0). 

In 0 4 some particular cases are studied and compared with previous work. The 
original Dicke results are retrieved for the short-time single photon emission (n = 1). In 
0 5 the results are generalised for stimulated emission, again valid up to a maximum 
time T ~ ~ ~ .  Finally, the accuracy of the present calculations as well as other mathemati- 
cal aspects of the theory are discussed at the end (0 6). 

2. Themodel 

If we consider a system of N two-level atoms interacting via the radiation field (i.e. any 
other interaction mechanism is discarded in this work) and assuming that the geometry 
or size of the system is such that only one mode of the field is necessary to describe it, the 
Hamiltonian of the system can be written as 

(1)  

where R3,  R', R -  are respectively the z component, raising and lowering operators for 
the atoms in the angular momentum representation, a and a' are the annihilation and 
creation operators for the field, K is the coupling constant, w the frequency of radiation 
and wO the separation of the two energy levels in units of h. In resonance w = W O .  

Apart from the above assumptions we further assume that the emitting medium has 
a low density such that the spatial part of the wavefunctions of the individual atoms do 
not overlap and symmetrisation is not necessary. Let us define 

(2) 

H = ha'a(w)+ hwOR3+hK(a + a')(R'+R-),  

fi = a+a + R 3 .  

[ f i ,H]=2hK(a'R'-aR-) .  (3) 

[fi, HI = 0. (4) 

Then it is simple to prove that 

We will assume that N is conserved or that 

Notice that assumption (4) implies that the difference of the two terms, normally 
neglected in the rotating-wave approximation, is zero; therefore this is a weaker 
condition than the rotating-wave approximation (RWA). Dividing equation (1) by hK, it 
can be written as 

H/hK = o l f i + R 3 A l + ( a  +a')(R'+R-) (5  1 
where 

fi = a'a + R3, w/K,  A1 = A/K = ( w o - w ) / K .  (6) 



Interaction of N atoms with the radiation field: I 2207 

A convenient representation for the atomic field operators can be constructed as a 
direct product of the photon-number eigenstates and Dicke states 

In>lr, m ) .  
According to the well-known angular momentum algebra 

R21r, m) = r ( r  + 1) Ir, m ) ,  

R31r, m )  = m (r, m ) .  
(7) 

Since the angular momentum operator R 2  also commutes with the Hamiltonian, the 
quantum numbers r and M = n + m  are conserved. If an initial state Ir, m(O)= 
M)In(O)=O) is assumed (to simplify the notation we will write IM)10)), then the 
probability amplitude for n photons at the scaled time can be written as 

p(n,  ~ ) = ( n ( ( M - n l  exp(-iT[w$+A1R3+(a +aC)(R++R-)]}IM)lO) (8) 

where T = Kt, t being the real time. 

3. The solution (spontaneous emission) 

As a first step we shall attempt to factorise the exponential appearing in equation (8), 
making use of a very ingenious set of ‘unscrambling’ theorems derived by Arecchi et a1 
(1972). They have shown that for any representation of the rotational group algebra 

wz sinh k 
cosh k +- - 

2 k  
U+ sinh k 

k 
sinh k wz sinh k 

2k w-- cosh k - i k 

exp(w+R++ w-R-+ wZR3) = 

where 

They also showed that, for example, 

Equations (9), (10) and (11) enable us to identify each matrix element and therefore 
factorise equation (8). The quantities to be determined are y+, y- and yL. From the four 
equations obtained by the identification only three are independent since the deter- 
minant of these matrices is unity (Arecchi et a1 1972). Setting now (according to 
equation (8)) 

wz = -i&T 

which is a c number, and 

~ + = w - = - i t a n ~ ( a + a + ) ,  (12) 
which are operators, the determinant of the matrix is still unity provided we consider a 
function of ( a + + a )  as its power series expansion and bearing in mind that w+ and w-  
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commute, so that the order of the factors is unimportant when calculating k. Therefore 
k becomes 

k = i ~ [ ( a + a ' ) ~ + A ? / 4 ] ' / ~ = i K ~  113) 

and the hyperbolic functions cosh K and sinh K become cos K1 and i sin K 1 ,  and yL ,  y* 
are easily determined as 

yz = [cos K1-i(A17/2)(sin K1)/K1I2, 

- k ( a  +a')  (sin K1)/K1 
cos K1 - iAIT (sin K1)/2K1 ' 

y+ = y- = 

From equations (9), (1 1) and (41, we can write 

e x p { - i ~ [ A ~ R ~ +  ( a  + a + ) ( R + + R - ) + w l $ ? ] }  

= exp(-i.rwl$?j) exp(y-R-) exp[(ln y , ) ~ 3 1  exp(y+R+) (15) 

where y+ and yz are given by equation (14). Making use of our result (equation (15)), 
the probability amplitude p(n,  7) can now be written as 

p ( n ,  7 )  = exp(-iwlMT)(n/(M - n /  exp(y-R-) exp[(ln yZ)R31 exp(y+R+)IM)IO). (16) 

Given the initial state IM)lO), the Hilbert space of our working basis is spanned by 
(M + r + 1) linearly independent states, since M C r. The states are 

lM)(O); IM- 1)II);. . . l-r)lM+r). i 17) 

For the case of stimulated emission (n(O)#O) the conserved quantity is M =  
m (0 )  + n (0) and the dimension of the space is again ( M  + r + 1) if M s r and (2r + 1) if 
M > r (Narducci er a1 1973b). 

Proceeding with the calculation of p ( n ,  T )  we write 

p ( n ,  T )  = exp(-iwlM7)(nI(M-n/ exp(y-R-)(yz)MIM)IO). (18) 

To derive equation (18), we used the following facts: 

Expanding exp(y-R-) in equation (18) and using the property of the angular momen- 
tum operator R- 

1/2 

(R-)"IM) = [ fi ( r  + M - q  + l ) ( r  -M+ q)] IM - n )  (20) 
q = 1  

we obtain 
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Taking the resonant case A1 = 0, the parameters of equation (14) become 
2 K1= T ( U  + U + ) ,  y z  = COS T ( U  + U + ) ,  

y+ = y- = -i tan ~ ( a  +a+), 

and 

M,,O = (n I tan" ~ ( a  + a+)  T(a + a +)IO)(+. (24) 

The calculation of the probability amplitude p(n, T )  has been reduced to the compu- 
tation of the matrix element M,o. 

Let us first solve the special case when 
(a) 2 M  2 n. In this case we write 

M n o  = [(-i)2"/22M~(nI{exp[i.r(a + a+)l-exp[-i~(a + a+)~}~{exp[iT(a +a+)] (25) 
+ exp[-i.r(a + 10). 

Mno can finally be written as 

Let us define 

a =2i.r(s1+s2-M); (27) 

exp[a (a + a +)] = exp(aa +) exp(aa) exp(a2/2). 

then, using the Baker-Campbell-Hausdorff (BCH) formula (Wilcox 1967), we can write 

(28) 

Making use of equation (28), M,o can be written as 

or 

x (-1)"-'1 e x p [ - 2 ~ ~ ( s ~  + s2 -M)~]. 

To derive equation (29), we use the following relations: 

(nl exp(aa+) exp(aa)lo) = (nl exp(aa+)IO) = a n / ( n  !)'I2 

From equations (21) and (29), we find that 



2210 M Orszag 

The result obtained in equation (3 1) is not general. Since we have assumed 2M b n, and 
considering that nmax = M + r, this condition becomes 

M 3 r. (32) 

The relation (32) can be satisfied with the equal sign for all times only in the case M = r. 
In all other cases the solution is valid for short times, before reaching nmax so that the 
relation 2M L n is satisfied. Beyond that time, this solution (equation (31)) becomes 
invalid. 

(b) General solution (spontaneous emission). We can write Mn0 in the form 

M,,= (--i)"(nI exp[n In tan ~ ( a  + a + ) + 2 ~  cos ?(a +a+)]1O) (33) 

and expand In tan T ( U  +a') and In cos T ( U  + a') in power series in the argument 
~ ( a  +a') (Abramowitz and Stegun 1970). It is simple to prove that (Appendix A) 

CO 

M , ~  = (-i)"T"(n [(a + a +)" n exp[c,(a + U + ) ~ ~ ] ~ O >  134) 
p = l  

with 

c, = nap + 2Mbp, 

up = (-l)p-122p(22p-' - 1)B2,T2"(p)(2p)!, 

bp = (-l)p22p-1(22p - l )Bz ,~~" / (p ) (2p) ! ,  

where BZp are the Bernoulli numbers, defined as (Abramowitz and Stegun 1970) 

[ (- 1 )'-'(2)(2p)! / ( 2 ~ ) ~ ' ]  f K -". (36) 
K = l  

BZP = 

Expanding the exponential in equation (34), and setting 
m m  m n (c,)'(a + ~ + ) " ~ / q !  = d,(a + U + ) ' " ,  

p = l  q=o t.=O 

equation (34) becomes 
cc 

Mno= (-i)"T"(nl d,(a + U ' ) ~ ~ + " ~ O )  
U = o  

or 
C O  

M,,= (-ilnTn c d,(nj(a + U + ) ~ " + " ~ O ) .  
u = o  

After some straightforward calculation (Appendix B) we obtain 

(2v + n ) !  
x [  q = 1  fi ( r + M - q + l ) ( r - M + q ) ~ " ~  v = o  2 " v !  d ,  . 
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From the definition of d, (equation (37)), we can write 

To visualise the rather complicated sum and product appearing in equation (42), we list 
here the first five terms: 

Since the product pq  in equation (42) cannot exceed U, the upper limits of the sum 
and product will be U rather than infinity, and p(n, 7 )  becomes 

or, in a final form 

and by &,d is meant ~ n l + ~ n 2 + 3 n a +  ...+ un.=v. 

as follows: 
Using the definition of the Bernoulli numbers (equation (36)), c,* can be expressed 

Finally, since equation (29) is not exact (a detailed discussion is presented at the end of 
this paper), the normalised probability I p ( n ,  7)12 becomes 

The same argument applies to the result given in equation (31). Summarising this 
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section, the results are 

for the case 2 M  3 n, and for the general case (spontaneous emission) 

4. Particular cases 

( a )  Short time solution, n = 1. From equation (44), neglecting the sum over U, 
which involves a power series expansion in T ~ ,  we obtain 

Ip(1, T)l2;=T2(r+M)(r-M+ 1) (47) 

which is Dicke's result, using first order perturbation theory (Dicke 1954). An identical 
result is obtained when the limit T-  small is taken in equation (31). 

(b) M = f, n = 1, r = f. This case was solved exactly in the rotating-wave approxi- 
mation by Jaynes and Cummings (1963, also Allen and Eberly 1975, Louise11 1964). 
At resonance, their result (n(0) = 0) is 

(48) 

Using equation (31) for the values of M = 3, n = 1, r = 2, the summation over s2 
disappears (s2 = 0) and we obtain (for the normalised probability) 

2 2 Ip(1,T)l =sin T. 

1 

Ip(1, 7)12,ormalised= ~ ~ / ( 1 +  7'). (49) 

If we now use the expression given by equation (44), the result obtained is identical to 
equation (49). 

The average number of photons is given by 

A = T 2 / ( 1  + T2). 

Notice that for 

T+oO, A + l .  

The difference between our solution and the result of Jaynes and Cummings is discussed 
at the end of this paper. 
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5. The solution (stimulated emission) 

Let us assume that the initial state of the system is characterised by 

where the conserved quantity is now 

The calculation proceeds as follows: by analogy with equation (16) 

p ( n ,  T )  = exp(-iwlMT)(n I(M - n I exp(y-R-) exp[(ln yZ)&1 exp(y+R+)lm(O))ln (0) )  
(53) 

where now p ( n ,  7 )  is interpreted as the probability amplitude for n photons to be 
emitted at time 7, when initially there were n(0) photons. Since our interest is in the net 
emission process, n n (0). The relation n > n (0) will be reversed if net absorption is 
considered. Also, since M is the only conserved quantity, for a fixed value of r there is a 
limited number of states for which n <n(O) and r > M > m ( O ) .  This case is not 
considered here. 

A typical example of n(O)>n  will be considered in Orszag (1979b), when the 
present Hamiltonian is used to describe non-linear optical effects. Both the second 
harmonic generation and anti-Stokes Raman effect are characterised by n s n (0). 

Following a procedure similar to the spontaneous emission case, one obtains the 
following results: 

upper 4 
p ( n , 7 ) =  ( fi [ ( r - m ( 0 ) - s + l ) ( r + m ( 0 ) + s ) 1 ” 2  

q - 0  s-1 

q+An 

f - 1  
x n [ ( r  + m(O)+q - t +  l ) ( r  - m ( 0 ) - q  + t)I1/’/(q + An)!q!} 

UP 
x fri([2(q+~)+An]!(n(0)!n!)’/2/[2q+u-’(q+~-j)! 

j = O  

x (n(0)  - j ) !  j ! ( j  + An)!]) exp(-iwlM7) 1 (54) 

where 

An = n - n (0), cb = (24+An)a,+2(m(0)+4)6, ( 5 5 )  

and the definitions of a, and 6, are given by equation (35). This calculation is done in 
Appendix C. The upper limits of 4 are n (0) and n (0) + r - M  if M s r and M > r 
respectively. The upper limits of j are n (0) and U + 4 if n (0) d 4 + U and n (0) > q + U 
respectively. 

As a consistency check, if we take n (0) = 0, the summation over 4 is reduced to one 
term (q = 0), the product II, = 1, An = n, j = 0, cb = c, (equation (35)) and the result of 
spontaneous emission is regained (equation (41)). 
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The final normalised probability (stimulated emission) is 

m 

L w = c  
~ ( - i ) ~ ~ + ' ~ [ ~ ~ ~ + ' ~ / q ! ( q + A n ) ! ]  [( fi 

u = o  p = 1  w = o  

x ("ygi{(2(q+ v ) + A n ) ! [ n ( 0 ) ! n ! ] ' / 2 / [ 2 q + " - i ( q + ~  - j ) !  

x (n (0) - j )  ! j ! ( j + An) !]})]I I * ( nr 1 p (n, r )  1') -' . 
n = o  

6. Discussion 

The extension of the unscrambling theorems (equations (9), (10) and (11)) to the case 
where the coefficients U+,  w -  and wz are operators is not obvious. Assuming that 
equations (9), (10) and (11) are true in a two-dimensional representation, it does not 
follow that the group property of rotations can be applied here since we are not dealing 
with ordinary rotations. Furthermore, this extension is only valid if the w's are a set of 
commuting operators acting on a HiIbert space different from the angular momentum 
space. The proof is given in Appendix D. 

Concerning the time range of validity of the solutions, equation (31) was derived by 
using power series expansions of the sine and cosine functions; therefore it is valid for 
all times. However, equations (46) and (54) were derived by using the power-series 
expansion of In cos T ( U  +a')  and In tan r(a + U + ) .  This expansion is valid provided the 
argument z of In tan z is such that 

l z l< l r /2 .  (57) 

To estimate the range of validity of the solution we take the classical limit, where the 

z = 2ar ( 5 8 )  

argument z becomes 

and 

= n 1'2. ( 5 9 )  
The condition of equation (57) thus becomes 

2n1/2r < 7r/2 (60) 

which clearly indicates that for a given initial preparation of the system there is a 
T = beyond which the solution becomes invalid. In table 1, rmax is listed for various 
values of n. 

This limitation applies to the cases when the system has been prepared in the 
super-radiant state (spontaneous emission) and intermediate states between the super- 
radiant and complete inversion states (spontaneous and stimulated emission). 
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Table 1. 

n = O  no limit 
n = l  0.7850 
n = 2  0.5553 
n = 3  0.4534 

n = 10 0,2483 
n = 2 0  0.1766 

In the case of complete inversion (M = r ) ,  equation (31) is used and is valid for all 

The following is a discussion on the validity of the RRWA and comparison with the 
times. 

RWA and exact cases. Let us define 

where 

In order to make a meaningful comparison we calculate the spontaneous emission for 
one photon by a power series expansion of the exponentials in equation (61). 

A simple calculation shows that 

(~I (M-  118exactlM)10) exp(iwtM) = (YC~ +a3cexact+ . . . 
( l I ( ~ - l I ~ R ~ ~ ~ I ~ ) 1 0 ) e x p ( i w t ~ ) = a ~ l + c u ~ ~ R R W A + .  . . (63) 
(~I(M- II&WAIM)IO) exp(iwtM) = cuc1 + ( u 3 c R W A +  . . . 

where 

Ce,act=$(wt)2(M- ll(ll(a +~+)~(R++R-)~\M)10)+higher  order terms in (ut), 

cRRWA=$(W~)~(M-  Il(ll(a + u + ) ~ ( R + + R - ) ~ ~ M ) ) o ) ,  (64) 
cRWA = $ ( u ~ > ~ ( M -  Il(ll(aR + + U + R - ) ~ ~ M ) [ O ) ,  

c1 = -(iwt)[(r + m)(r  -M + I)]''~. 

From equations (63) and (64) we conclude that the difference between the three 
models arises in the cubic and higher order terms in cy. By comparison of Cexact, CRRWA 
and CRWA, we can see that the RRWA model is exact up to ( C Y ) ~ ( U ~ ) ~  while the RWA 
neglects part of this term. Therefore the RRWA is a slightly better approximation since it 
includes more terms from the expansion of the exact model, as compared with the RWA. 
The main difference between the two models is that in the RWA, only energy conserving 
terms are considered; for instance, aR+ represents the annihilation of a photon and the 
creation of a unit of energy for the atoms. The model itself leads to periodic interchange 
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of energy between the atoms and the field. Hence one obtains a periodic behaviour for 
the' emitted photons (average). 

On the other hand, the RRWA does not take only energy-conserving terms, and 
therefore, as we can see from the present results, the periodic behaviour is destroyed. 
Exceptionally, this is not true for the case of one atom, where, as we shall prove, the 
non-conserving terms do not contribute to the one-photon emission probability. 

As far as the normalisation problems arising in the present work are concerned, a 
careful analysis shows that they are due to the finite spectrum of the In) states. Because 
of this fact, equations (29), (40), (B.3) and (C.15) are only approximate. To see this 
clearly, consider the case M = r = $. The probability amplitude p ( 1 , ~ )  is given by 

exp(iwlTM)p(l, T )  = (-$l(ll exp[-i.r(a + ~ + ) ( R + + R - ) I I o ) I ~ ) ,  (65) 

which can be expanded in a power series as follows: 

exp(iw1TM) p ( 1 , ~ )  

= (-$j(ll(l -iT(a +u+)(R+ +R-)- (T ' /~!)(u + u+)'(R++R-)'.  . . /o)lt). 
(66) 

The Hilbert space of the In) states is truncated to two states, 10) and 11). Using the 

(67) 

well known properties of the R+ and R- operators one obtains 

exp(iwlMT)p(l, 7) = (-i)(T- (r3/3!) + ( T ' / s ! )  . . . 
and 

Ip(1, 7)l2 = sin2 7. (68) 

(69) 

Similarly we obtain 
2 2 

I P ( O , T ) l  =COS T, 

which is in agreement with Jaynes and Cummings. In this special case, as mentioned 
before, the non-conserving terms did not contribute to the probabilities. In more 
general terms, one can write 

exp(iwlTM)p(n, T )  = (M-nI(nI exp[-ir(a +a+)(R++R-)]IO)IM) (70) 

for the case of spontaneous emission of n photons. By a power series expansion of 
equation (70), we obtain 

{( n I (a  + a +)" IO)} {(M - n 1 (R + + R -) " IM)}. 
p3 (-ir)m 

exp(iwlMT)p(n, T) = C --i- (71) 
m = o  M .  

Following the techniques used in this work, we write 

(nib +a')'"IO> = (d"/dP")(nI exp[(a +a+)Pl lO)l~=o (72) 

(73) 

Since the angular momentum operators act on a finite spectrum there is no difficulty in 
using the unscrambling theorems for exp P ( R + + R - ) .  It is simple to prove that 

and 

( M  - nl(R'+R-)"IM) = (d"/dp")(M - n /  exp[(R+ + R-)P]IM)ls=o. 

exp[@(R'+R-)] = exp[(tanh P)R-] exp[ln(cosh2 P)R3] exp[(tanh P)R'] (74) 
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and, using equation (74), the following result is readily obtained: 

with 

( r  + M ) !  ( r  - M  + n)!  1'2 

A = (  ( r - M ) !  ( r + M -  n ) !  > *  

If we now apply a similar technique to the boson operators (equation (72)), using the 
BCH identity, we obtain 

(nib + a+)"\O> = (d"/dB")(nI exp(Pa+)IO) exp(P2/2)b=o 
1 

=- ( d " / d ~ " ) ~  exp(P2/2)) Is=o (77) (n !I~'~ 

which can be written in the final form 

9 (78) ( n J ( a  + a+)"10) = m ! / ( n  !)ll2[4(m - n ) ]  2(m-n)/2 

valid for m 3 n, and both m and n either even or odd. 
Equation (78) is not generally exact. It is exact only for the unbounded spectrum, 

and in the case of the truncated In) states, it is exact only up to terms with m s M + R. 
For m > M + R, unwanted states with n > nmax = M + R are generated and computed. 
To take a simple example, let us return to the one-atom case. A direct computation 
gives 

(ll(a + a + ) 3 ~ ~ ) = ( l ~ a + a a + + a a + 2 ~ ~ )  (79) 

which are the only two contributing terms. Since the truncated In) states contain only 
the 10) and (1) states the second term in equation (79) generates a 12) state and therefore 
drops out of the calculation. We obtain 

However, if we assume that both terms contribute (which is obviously incorrect), we 
obtain 

Using equation (78) with m = 3 and n = 1, we also obtain the result of equation (81), 
which is incorrect. 

The point at issue is the size of the error introduced by using equation (78). For 
r = M = f it is clear that an error is introduced and that the results of Jaynes and 
Cummings are not regained. This is not a result of the RRWA, as is shown by equations 
(68) and (691, but is rather due to the inaccuracy of equation (78). 

Generally, for a given M and r, and with increasing m, the error will appear only 
when m > M + R and states with n > nmax are starting to be generated. Therefore an 
error of the order of ( T ) ~ + ~  is introduced. It is clear at this point that since the model 
itself is only accurate up to a3,  for (M + R )  > 3, this error is smaller than that inherent in 
both the RWA and RRWA theories and therefore that it can be neglected. 
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The previous argument applies to spontaneous emission ( 0  3). For stimulated 
emission, the quantity involved is 

(n l(a + a + I m b  (0)) 
with nmax = M +R. The calculations are therefore exact up to 

mmax = M + R - n (0). (82) 

Summarising this discussion, the present theory, when applied to a system with a 
reasonably large number of atoms, is more accurate than the RWA, and the accuracy of 
the calculations presented here and of the curves presented in Orszag (1979a) are 
limited only by the accuracy of the model itself. 
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Appendix A. Proof of eqwtion (34) 

From Abramowitz and Stegun (1970) we obtain 

where a, and b, are given by equation (35). Usingequations (A.l), (A.2), (33) and (35) 
we obtain 

or 

M"O= (-i)"T"(nl cp(a +a+)'" 1 (a +a+)"10> (A.4) 
m 

where cp is given by equation (35). Equation (34) is the factorised version of equation 
(A.4). 

Appendix B. Proof of equation (40) 

Using the BCH formula (34) we obtain 

( n ) ( a  + u + ) ~ " + " ~ O )  = (d'"C"/d~2"'")(exp(~2/2)(n I exp(Ea+) exp(ea) 10)}E=o (B.1) 
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or 

(nl(a +a+)2u+n1~)= ( 2 ~ + n ) ! [ ( n ! ) " ~ 2 " u ! ] .  03.3) 
Substituting equation (B.3) into equation (39), we obtain equation (40). 

Appendix C. Proof of equation (54) 

M = m (0) + n (0) > r, m (0)" = r 

M = m (0) + n (0) d r, m (0)max = M 

Considering the condition (C.2) exp y+R+ can be expanded in a power series of the 
argument: 

The upper limit of q is n (0) if M =s r and n (0) + r - M if M > r. From the well-known 
rules for angular momentum operators we have 

( R + ) ~ I ~ ( o ) )  = fi [ ( r  - m(01- s + l > ( r  + m(01 + s)1~/~1m(0) + 4) 

exp[(ln y Z ) ~ 3 I l m ( ~ ) + q )  = (yZ)m(o'+q Im(O)+q). 

s = l  

and 

(C.4) 
In equation (C.4), it is understood that lT:=, = 1 when q = 0. Substituting (C.3) and 
(C.4) into (C.l), we obtain 

x s=l fi [ ( r - m ( ~ ) - s +  l ) ( r + m ( ~ ) + s ) ~ l / ~ ] / m ( ~ ) + q ) l n ( ~ ) ) .  (C.5) 

Let us define 

A, = [ ( r  - m(0) -s  + l)(r+ ~ ( O ) + S ) ] ~ ' ~ ,  (C.6) 
and it follows from the angular momentum rules that if we expand 

then 
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where 

B, = [ ( r  + m(0)+4 - t + l)(r  - m ( O ) - q  + t)]'". 

If we substitute (C.6) and (C.7) in (C.5) and use the condition (C.8), we obtain 

p ( n ,  7) = uprr ' [ ( fi As) ( ' f f n  Bt)/(q +An)! 4 !] 
q = o  s = l  1 = 1  

At resonance 

y +  = y -  = -i tan ~ ( a  + U + )  

y, = cos 7(u  +a+) ,  

M n , n ( o )  = ( ~ I ( Y - ) ~ + ~ ~ ( Y + ) ~ ( Y ~ ) ~ + ~ ( ~ ) I ~ ( ~ ) ) ,  

2 

and 

M n , n ( o ) = ( n I  exp[(2q+An) In tan T ( U  +a+)  

+2(m(0)+4) In cos ~ ( a  + a + ) ] l n ( ~ ) > ( - i ) * ~ + ~ ~ .  

From (A.3), (A.4) and (AS)  we can write 

((2.10) 

(C.11) 

Defining 

(C.13) 

(C.15) 

In equation (C.15) the upper limit of j is n(0) rather than infinite, since 

aqn (0)) = 0 if j>n(O).  
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Proceeding with the calculation of Nn,n(o), we write 

(2(u +q)+ An)! (n(O)! n!)"' 
Nn,n(o) = j=o 2ucq- i (~  + q - j ) ! j ! ( j + A n ) ! ( n ( O ) - j ) ! '  

The upper limit of j is 

Finally, we write Mn,n(o) as 

and 
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(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

which is equation (54). 

Appendix D. Proof of the extension of the unscrambling theorems in the case when 
w+, w-, wz are commuting operators. 

Assume that 

exp(ocJ++w-J-+wJ3) = exp(y-R-) exp[(ln y,)R31 exp(y+R+) (D.1) 
is true for a two dimensional space, where 

0 1  0 0  J3=L(1 "). 
2 0 -1 

Also, define the N-particle operators 

R' = 1 (.I+)("), R -  = (J-)'"),  R3= (J3)("), 

N N N 

n = l  n i l  n = l  
(D.3) 

where the superscript denotes the specific particle. The corresponding exponential for 
the N-particle case would be 

that can be ordered as follows: 
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The last step in equation (D.5) is only valid if U+,  w-  and wr commute. We also made 
use of the fact that the angular-momentum operators corresponding to different 
particles commute with one another. Using equation (D.l) N times, we can write 

exp[w+ 1 ( ~ + ) ( " ) + w -  1 ( ~ - ) ( " ) + w ,  C (~3)(")] 

= exp[y-(~-)'"] exp[(ln yZ)(~3)(l)I exp[y+(~+)"'I 

x . . . x exp[y-(~-)'"'] exp[(ln Y,)(J~)'"'] exp[y+(~+)'"'I, 0 . 6 )  

and, since y+, y- and yz are functions of U,, w -  and wz, they will also be a set of 
commuting operators; therefore we can shift for instance exp y-(J-)'*' in equation (D.6) 
to the left, next to exp y-(J-)") and we can continue the procedure with exp Y-(J-)'~', 
etc. Applying the same method to exp(1n y , )J:  and exp y+(J')' we get 

which is what we wanted to prove. 
As for the proof of equation (D.l) for the two-dimensional cases, we can follow a 

procedure identical to Arecchi et a1 (1972), the only difference being that in the 
Maclaurin expansion the coefficients are operators rather than c-numbers, again 
provided that U+,  U -  and U= commute. 
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